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It is pointed out that in the solution of problems on the self-synchron- 
ization of identical mechanical vibrators the result of the investigation 
of the stability of the synchronized motion is obtained in a form which 
is similar to a certain integral criterion of stability. It is shown by 
a number of examples that the conditions of stability, obtained earlier 
by rigorous methods as the result of fairly cumbersome arguments and deri- 
vations, can be found quite simpiy by the use of an integral criterion. 

The object of this paper is to prove the criterion, and also to deter- 
mine the class of nonlinear systems and their motions for which there 
exist similar criteria of stability. A simplified method is given for 
obtaining relations which determine the phases of rotation of vibrators 
in synchronized motion. 

1. Simplified method of finding synchronized motions and an integral 
criterion of stability in problems on self-synchronization of vibrators. 
In the solution of concrete problems on the self-synchronization of 
mechanical vibrators [ 1,2 1 the most difficult step is the separation of 
the stable motions from all the found synchronized motions. 

The synchronized motions which are far from resonance can correspond 
to each of the real solutions of some system of transcendental equations 
(Equation (2.18) of [ 1 1 and Equation (2.6) of 12 1 ) in the quantities 

al, . . . . aA (b is the number of vibrators), which are called generating 
phases. The generating phases are determined by the mentioned equations 
to within an unessential additive constant a,,. In other words, one of 
the phases, for example ah, can be assumed to be zero without loss of 
generality. 

The process of the investigation of stability consists of the 
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construction of an algebraic equation of degree k - 1, written in the 
form of a determinant of order k - 1, and of the study of the signs of 
the real parts of the roots of this equation, which correspond to each 
solution of the mentioned transcendental equations. The coefficients of 
the indicated determinant are computed separately for each of the various 
classes of problems on self-synchronization; in [ 1 1 this was done for 
the case of a vibrating object with one degree of freedom, while in [2 I 
it was carried out for the case of a vibrating object in the form of a 
solid body performing planar parallel motion, i.e. having three degrees 
of freedom. 

One of the interesting practical particular cases of the problem on 
self-synchronization is the case of identical (or almost identical) 
vibrators having the same (or almost the same) positive partial angular 
velocities. * 

In all concrete problems studied by the authors of this note and 
related to this case, the result of the previously described process of 
investigation of the nature of the possible synchronized motion and of 
their stability has indicated that the following assertion is true. 

In all synchronized motions, determined by the Solutions al*, . . *, ak* 
of the equations for the generating phases, only those will be stable 
which correspond to the minimum value of the mean, over the period a/o, 
of Lagrange’s function 

A, = A, (u1, . * . , a,) = -& 
s 

Lo dt, Lo = T, - i7, (1.1) 
0 

evaluated for the auxiliary body (To and r$, are the kinetic and potential 

enerizy. respectively, of the auxiliary body; o is the angular velocity 
of the synchronized rotation of the vibrator).** 

By identical vibrators we mean vibrators all of whose parameters, with 
the possible exception of the rotating moments Lr, are the same. With 
regard to Lrs we assume only equality of absolute values. In the case 
when one considers rotation of identical vibrators with the same and 
positive partial velocities or = urLr (oror)/k,. one has: we = or > 0 

and orL,(or~,l - kra,, = 0, where k, = k is the coefficient of the 
rotational resistance of the rotor of the vibrator [ 2 I. 

By the auxiliary body we mean a rigid body which at every instant of 
time coincides with the given body on which the vibrators are in- 
stalled (vibrating organ). The auxiliary body is obtained from the 
given solid body by adding to it the mass of all unbalanced rotors 
concentrated on the axes of rotation of the vibrators. 
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Hereby, the values of the generating phases aI*, . . . , ak*, which cor- 
respond to the synchronized motions, can be determined up to within an 
additive constant from the conditions that the function A,(a,, . . . , a,,) 
by stable. These conditions are thus equivalent to the transcendental 
equations mentioned earlier. 

It is important that for the application of the formulated integral 
criterion of stability to the considered problems on self-synchronization 
it is not necessary to find the exact values of the coordinates and velo- 
cities of the system of synchronized motions, but it is sufficient to re- 
strict oneself only to the initial approximation which corresponds to the 
generating solution. This solution corresponds to the uniform rotation of 
the vibrators according to the law 

vs = 6, (6Jt + ug) (s=l, . . . ( k) W) 

(us is equal to +1 or -1, depending on the direction of the rotation of 
the sth vibrator) and to the stabilized forced oscillations of the 
vibrating organ under the action of the disturbing forces produced by the 

vibrators moving in accordance with the law (1.2). 

The investigation is considerably simplified also because of the fact 
that Expression (1.1) does not contain the kinetic and potential energies 
of the entire system, but does contain much simpler expressions T,, and l$, 
which are quadratic forms of the generalized velocities and generalized 
coordinates determining the position of the vibrating element. 

The authors do not know of any general principles or theorems of 
mechanics which might imply directly the above-formulated assertion. The 
integral criterion of stability of synchronized motions has been used for 
the purpose of obtaining predictions on the nature of stability of motion 
in complicated cases of the problem for which the solution has as yet not 
been obtained by the methods of Poincare and Liapunov. These predictions 
have all been verified by experiment. 

Of great interest is the problem on the determination of the class of 
systems and motions for which similar integral criteria of stability 
might exist. We shall not go into the consideration of this general prob- 
lem, but shall restrict ourselves to the illustration of the application 
of a simplified procedure for finding the equations for the generating 
phases and of the integral criterion of stability with the aid of a 
number of simple examples. 

2. Problem of self-syncbronizatlon of two ideaticaI vibrators in- 

stalled on a vibrating element with one degree of freedom. We shall in- 
vestigate the synchronized motions of a given system (Fig. 1) by the 
method presented in Section 1. 
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The equation of small oscillations of the vibrating element, when the 
vibrators are rotating in accordance with the law 

0% 6l(ot + al), cpa=az(ot +%& Iall= lQal= 1 (2.1) 

has the form 

Z + Aax = $ [cos (ot + al) + cos (ot + uz)] (2.2) 

It is assumed here that the motion is independent of the values of the 
parameters UI and u2 which determine the direction of the rotation of 
the vibrators. 

Here, M is the mass of the system, x = d c/M is the frequency of the 
characteristic oscillations, c is the rigidity of the elastic elements 

and F is the amplitude of the disturbing forces developed by each 
vibrator. 

The periodic solution of Equation (2.2) which corresponds to the 
forced stabilized oscillations is given by 

F 

z = M (A2 - ma) [cos(ot + Ul) + cos(ot + %)I 

The mean, over one period, of Lagrange’s function is 

axlo 
0 

A0 = 2n 5 ( 1 +&__cxa &=1F2 
> 

cos a 
2 M (ClP-kZ) + co 

0 

(2.3) 

(2.4) 

where a = a1 - a2 is the relative phase shift of rotation of the vibra- 

tors, and C, is a quantity which depends on a. 

Equating to zero the derivative dho/daa. we obtain the equation 
sin a = 0. which has two essentially different roots (a)I = 0. (a), = n 

Fig. 1. Fig. 2. 

In the pre-resonance region (o < A) the first solution corresponds to 
a minimum, while the second solution corresponds to a maximum of the 

function &,a. In the post-resonance region (o > h) the value a = (a),= 0 
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corresponds to a maximum, while the value a = (a), = !d corresponds to a 
minimum. Hence, according to the integral criterion, we can draw the 
following conclusions: in the pre-resonance region we have only in-phase 
stable synchronized motion, while in the post-resonance region we have 
only opposite-phase synchronized motion of the vibrators irrespective of 
the direction of rotation. 

These results, which were obtained by the use of the integral criterion 
of stability, coincide completely with the results found for the given 
case by the methods of Poincare’ and Liapunov [ 1 1. 

3. Pmblea on the self-synchronization of ‘tro identical vibrators 
placed symmetricaIlg on a softly damned vibrating eleaeat with three de- 
grees of freedom. Suppose that the vibrating element is an absolutely 
rigid body which can perform planar parallel motion and which is con- 
nected to a fixed base by means of a system of damped springs. The springs 
will be considered to be so soft that the largest frequency of the 
characteristic oscillations of the body on the dampers is negligibly 
small as compared to the frequency of forced oscillations (Fig. 2). On 

the vibrating element there are placed, symmetrically to its center of 
gravity. two identical unbalanced vibrators with parallel axes of rota- 

tion. 

The equations of motion of the vibrating element during the rotation 
of the vibrators according to the law (2.1) have the following form: 

id-‘= F [cos (ot + al) + cos (at + uz)] 

My= - F [61 sin (ot + aI) + o2 sin (ot + aZ)] (3.1) 

r;d = Fr [SI sin (WL + ~11) - CS~ sin (wt + u3)] 

Here, x and y are the coordinates of the center of gravity of the 
vibrating element in the fixed system of axes xOy, $ is the angle of 
rotation of the vibrating element with respect to these axes in the 
clockwise sense, M is the mass of the system, I is the moment of inertia 
of the rigid body and of the vibrators computed under the assumption that 
the mass of the unbalanced rotors is concentrated on their axes of rota- 
tion, r is the distance from the axes of rotation of the vibrators to the 
center of gravity of the body, F is, as before, the amplitude of the dis- 
turbing forces developed in each vibrator. 

Because of the assumption on the softness of the elastic supports, 
one can assume that the potential energy of the system is zero. Hence, 
having determined i, j and 4 for the stabilized motion by integrating 
Equations (3.1). we obtain 
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of 
Here, a = al - a2 is, as before, the relative phase shift of rotation 
the vibrators and Cl is independent of the angle a. 

Equating to zero the derivative d!jO/da, we obtain the equation 

sin a = 0, which has two essentially distinct roots (a), = 0 and (a)2 =n 

It is obvious that if the vibrators rotate in the same direction 

(ulaz = 1) the first root corresponds to a minimum of the function &(a) 

under the condition that 

Mr”/I>2 (3.3) 

The second root corresponds in this case to a maximum of the function 

h(a). If the condition (3.3) is not satisfied, the opposite conclusion 

is valid. 

In case the vibrators rotate in opposite directions (0102 = -1). the 
value a = (a)l = 0 corresponds always to a maximum, while the value 
a= (a),= n will correspond to a minimum of the function &(a), 

According to the integral criterion, if uloZ = 1 and if condition 
(3.3) holds, only the in-phase motion is stable, while if (3.3) is not 
satisfied then the stable motion occurs when the vibrators rotate with 

opposite phase; if 0102 = -1, only the opposite-phase rotation is stable. 
It is not difficult to prove that in the given case the results obtained 
by means of the integral criterion coincide completely with those found 
by the methods of Poincare and Liapunov [ 2,3 I, 
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